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Abstract

We consider a variational formulation based on Maxwell’s equations for the prop-
agation of high frequency (gigahertz to terahertz) ultrashort input pulses in dielectric
materials modeled by a linear Debye medium. We demonstrate computationally the
emergence of Brillouin precursors in the material (water) and the fact that the peak
of this transient is attenuated at a much slower rate than is the carrier frequency. In
the 0.1 to 1 THz regime the carrier frequency does not propagate in our calculations.
Only the precursors enter the material, and this is in line with experiments reported
by Pleshko and Palocz [11]. We also implement models that include nonlinearly forced
Debye and nonlinear Debye polarization dynamics and demonstrate the importance
of nonlinear effects, especially when the amplitude of the input signal is large. This
is an important step in understanding high frequency pulse propagation, and it has
potential applications in the assessment of safety standards and in extending current
imaging capabilities in both civilian and military uses.

1 Introduction

In recent years there has been a great technological development in methodology for
generating ultrashort pulses of light in the terahertz range. A single pulse of a few
picoseconds long allows the full terahertz spectrum to be measured, and thus facilitates
better (spatial and electromagnetic) and faster imaging results than more traditional
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techniques. In this frequency range several organic materials exhibit strong absorption
and dispersion that are characteristic to the particular molecular structure and content.
Thus, detection of the temporal distortions of the electromagnetic wave caused by the
interaction yields information about the composition of the material in real time. For
example, it is known that cancerous and benign tumors have different electromagnetic
characteristics. Thus an imaging device based on THz waves could not only give
information about the structure of an object (geometrical properties) but could help
in determining its composition and electromagnetic properties as well in a non-invasive
way.

In this paper we present extensive numerical simulations modeling the propaga-
tion of electromagnetic waves in the gigahertz to terahertz frequency range through
dielectric materials with special emphasis on ultrashort input pulses. In the first set
of numerical experiments we concentrate on a linear Debye medium, and study the
propagation characteristics, in particular, temporal transients such as the Brillouin
precursors as they change with the increasing carrier frequency of the input pulse. Our
results are in agreement with theoretical and experimental observations [8, 11]. It is
known that most materials exhibit nonlinear characteristics in their interaction with
the electromagnetic wave, especially when the input signal has a large amplitude [2].
Our models incorporate different nonlinear polarization mechanisms which influence
the propagation characteristics. In particular, we study a nonlinearly forced linear
Debye model [6], as well as a mechanistically nonlinear Debye model. Our computa-
tional framework is based on a variational formulation of Maxwell’s equations. We
believe that this framework provides a means to capture important dynamic phenom-
ena associated with short input pulses (which has been demonstrated for microwave
propagation), and is amenable to both theoretical and computational investigations.
The simulations reported here form an important step towards using electromagnetic
pulses for interrogation of unknown materials with potential applications in indus-
trial inspection, security screening, medical diagnostics and several other civilian and
military problems.

The paper is organized as follows: in Section 2 we present the general variational
framework describing the physical problem, we outline the numerical methods used and
present the results for a linear Debye medium. In Section 3 we include nonlinearities
in the form of a nonlinearly forced Debye polarization mechanism, while in Section 4
we present our initial results for a nonlinear Debye model.

2 Variational framework and linear results

In this section we describe a model that was initially developed for the propagation
of microwaves in dielectric materials in the monograph [3]. The authors studied both
the direct and the inverse problem, and investigated the feasibility of using windowed
pulses from antenna sources to interrogate the material. They developed a theoretical
and computational framework for using reflected signals to identify both geometric and
electromagnetic properties of an object. The inverse problems were solved either by
use of a supraconductive backing behind the object or by use of acoustic waves from
which the signal is reflected.
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Our focus here is on understanding the propagation characteristics of pulses with
different carrier frequencies, and for this purpose we set up a simplified model. However,
we note that this simplified formulation can be readily extended to treat interfaces and
the more general inverse problems. We consider as in [3] an infinite (in the x and
y direction) slab of homogeneous material of width ` with faces parallel to the xy
plane. However, here we place an antenna inside the material, usually in the middle.
The input signal is a planar electromagnetic wave polarized with oscillations in the xz
plane only. The electromagnetic field ~E is reduced to one nontrivial component, in
the x direction, at all points of the slab, and it is homogeneous in intensity in the x
and y directions. The electromagnetic flux density ~D and the polarization ~P inherit
this uniform directional property from ~E. With these assumptions Maxwell’s equations
yield

µ0ε0εrË + µ0P̈ + µ0σĖ −E′′ = −µ0J̇s t > 0, 0 < z < `, (2.1)

where E = E(t, z) and P = P (t, z) denote the x components of the electric field and
the polarization, respectively, and D = ε0εrE + P. The parameter µ0 is the magnetic
permeability, ε0 is the electric permittivity of free space and εr is the relative permittiv-
ity (see [3] for discussions). Here Js is the source current density, while the conduction
current density, Jc, is assumed to be given by Ohm’s law as Jc = σE. It is argued
in [1, 3] that this simple form of Ohm’s law together with the introduction of nonlo-
cality in time through an electric susceptibility kernel (polarization dynamics) capture
the frequency dependence of the conductivity of dispersive media. In this section we
consider a linear polarization mechanism proposed by Debye [7] to model the behavior
of materials with a permanent dipole moment, e.g., water (orientational polarization).
This is given by

τṖ + P = ε0(εs − ε∞)E, t > 0, (2.2)

where εs is the static relative permittivity, while ε∞ = εr. We note that this model
can be realized with electric susceptibility kernel g(t) = e−t/τε0(εs− ε∞)/τ in the con-
volution expression P = g ∗ E. For our numerical computations we use approximately
absorbing boundary conditions at the ends of the slab to prevent large reflections of
the waves

[√
εs

c
Ė − E′

]

z=0
= 0, (2.3)

[√
εs

c
Ė + E′

]

z=`
= 0, (2.4)

with c2 ≡ 1
ε0µ0

. The approximate nature of these boundary conditions does not cause
a problem for us, since in each case we make sure that the computational domain is
sufficiently large, so that we do not see any reflections in our time frame. We complete
the system with initial conditions

E(0, z) = 0, 0 < z < `, (2.5)
Ė(0, z) = 0, 0 < z < `, (2.6)
P (0, z) = 0, 0 < z < `. (2.7)

3



We define V = H1(0, `), H = L2(0, `) and write (2.1) and (2.2) in weak form as

〈µ0ε0εrË, ϕ〉+ 〈µ0σĖ, ϕ〉+ 〈P̈ , ϕ〉+ 〈E′, ϕ′〉+
√

εs

c
Ė(0)ϕ(0) +

√
εs

c
Ė(`)ϕ(`)

= −µ0〈J̇s, ϕ〉 (2.8)
〈τṖ + P,ϕ〉 = 〈ε0(εs − ε∞)E, ϕ〉 (2.9)

for all ϕ ∈ V. Well-posedness results given in Chapter 3 of [3] can be used to guarantee
the usual existence, uniqueness and continuous dependence of solutions for this system.

For computational purposes we scale the time variable by a factor of c and polar-
ization P by a factor of 1/ε0, i.e., we let Ẽ = E(ct), P̃ = 1/ε0P (ct). We express P̈ from
(2.2) and substitute it into (2.8). The new equations in the scaled variables are (where
for the sake of simplicity of notation we drop the overtildes)

〈εrË, ϕ〉+ 〈(ησ + εdλ)Ė, ϕ〉+ 〈λ2P, ϕ〉 − 〈εdλ
2E, ϕ〉+ 〈E′, ϕ′〉+

√
εsĖ(0)ϕ(0)

+
√

εsĖ(`)ϕ(`) = −η〈J̇s, ϕ〉 (2.10)
〈Ṗ + λP, ϕ〉 = 〈εdλE,ϕ〉, (2.11)

where we introduced the notation εd = εs− ε∞, λ = 1
cτ and η = µ0c. We discretize the

problem in the space variable using a first order Galerkin finite element approximation.
We divide the interval [0, `] into N equal subintervals at the points z = jh, j = 0, . . . N,
where h = `/N, and construct standard piecewise linear splines φN

j (z). The finite di-

mensional approximating subspaces to V will be taken to be V N =
{
φN

0 , φN
1 , . . . , φN

N

}
.

Now we approximate E(t, z) and P (t, z) in this space as

E(t, z) ≈ EN (t, z) =
N∑

j=0

eN
j (t)φN

j (z), (2.12)

P (t, z) ≈ PN (t, z) =
N∑

j=0

pN
j (t)φN

j (z). (2.13)

We choose the space of test functions to be V N also, and thus we find that (2.10)-(2.11)
lead to

εrMë + ((ησ + εdλ)M +
√

εsBD)ė + λ2Mp + (K − λ2εdM)e = −ηJ , (2.14)
Mṗ = −λMp + εdλMe (2.15)

where e = (eN
0 , eN

1 , . . . , eN
N )T , p = (pN

0 , pN
1 , . . . , pN

N )T , J = (J0, . . . ,JN )T , with
Ji = 〈J̇s, φi〉, i = 0, . . . N, and

Mij = 〈φi, φj〉 =
∫ `

0
φi(z)φj(z)dz,

Kij = 〈φ′iφ′j〉 =
∫ `

0
φ′i(z)φ′j(z)dz.
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Here BD denotes a matrix with BD00 = BDNN = 1, while all other elements of the
matrix are 0. We now employ a second order central difference approximation in the
time variable to solve (2.14). We take

ë(tn) = ën ≈ en+1 − 2en + en−1

∆t2
, ė(tn) = ėn ≈ en+1 − en−1

2∆t

and

e(tn) = en ≈ en+1 + en + en−1

4
.

Now the Galerkin approximation (2.14) reduces to a linear equation that can be solved
for en+1 given en, en−1 and pn. We have initial condition e0 = 0 and we approximate
e1 ≈ −η∆t2

2εr
J̇s(0, z). To obtain pn we solve (2.15) using a Crank-Nicholson method.

This approximation method is overall O(h2) when ∆t = O(h). We also note that the
method is unconditionally stable.

In the following we describe our simulations for the problem above. Our physical
constants are ε0 = 8.854 · 10−12, c = 2.9980 · 108 m/sec, µ0 = 1.2566 · 10−6 We carried
out all the calculations assuming that the dielectric material is water with parameters
εr = 5.5, εs = 80.1, τ = 8.1 · 10−12sec, σ = 10−5Ohm−1. We conducted a series
of numerical experiments with windowed input signal (generated by an antenna at
z = `/2)

Js = A sin3(ωt)χ[0,tf ](t)δ(z − `/2),

with amplitude A = 1, frequencies ω =1 GHz, 10 GHz, 100 GHz and 1 THz, and
final input time tf = 10/ω, i.e., we used 5 complete periods of the input signal. We
represent the results two different ways: (a) we took snapshots of the electric field in
the material at several points in time and (b) we recorded the electric field at particular
points in the material from time t = 0 to some t = tend. The value of tend is chosen in
each case such that the input signal reaches the sides of the material, but reflections do
not propagate backwards significantly. Figures 1 and 2 depict these simulations for the
input signal with carrier frequency 1 GHz, while Figures 3 and 4 present the results
for the signal with input frequency 10 GHz.

We can clearly see the emergence of the Brillouin precursors in both cases. It is
important to observe that while the signal is attenuated as it propagates through the
material, the rate of attenuation of the transient (precursor) is slower than that of the
carrier frequency (which decays exponentially). This fact has important implications
for the determination of safety standards since the precursor may penetrate much
deeper with more energy than does the carrier frequency part of the signal. The signal
attenuation curve is shown in Figure 5 for the 1 GHz case. We remark that these
results are in agreement with those reported in [1], where the authors find the electric
field in terms of a Fourier series after developing the input pulse train in a series. The
drawback of that method is that it does not readily extend to higher frequencies and
to the treatment of the inverse or imaging problem. In particular, it is very difficult to
treat the interaction of transmitted and reflected waves.

We next report on the results with input frequencies 100 GHz (Figures 6 and 7)
and 1 THz (Figures 8 and 9).
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Figure 1: The electric field in the material at t=10, 20, 30 and 40 ns, 1 GHz example.
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Figure 2: The electric field recorded at the antenna and at a distance of 0.6, 0.75
and 1 m from the antenna, 1 GHz example.
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Figure 3: The electric field in the material at t=0.33, 0.66, 0.99 and 2.33 ns, 10
GHz example.
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Figure 4: The electric field recorded at the antenna and at a distance of 1 cm,
7.5 cm and 10 cm from the antenna, 10 GHz example.
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Figure 5: Attenuation of the peak of the transient (dashed line) and the carrier
frequency (solid line).
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Figure 6: The electric field in the material at t=0.049, 0.099, 0.14 and 0.25 ns, 100
GHz example.

We can observe that the carrier frequency does not penetrate the material in these
cases. It is only the transient that propagates inside the material. This result is
expected based on theoretical considerations [8, p.313.] and experimental observations
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Figure 7: The electric field recorded at the antenna and at a distance of 1 mm, 7.5
mm and 10 mm from the antenna, 100 GHz example.
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Figure 8: The electric field in the material at t=0.12, 0.24, 0.37 and 0.5 ns, 1 THz
example.
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Figure 9: The electric field recorded at the antenna and at a distance of 1.25 mm,
2.5 mm and 2.81 mm from the antenna, 1 THz example.

[11].
Thus we can see that our numerical simulations based on a variational formulation

provide a detailed description of the propagation of the electromagnetic pulse, in par-
ticular, we are readily able to capture the temporal transients, such as the Brillouin
precursors.

3 Nonlinearly forced Debye polarization model

In this section we introduce a polarization dynamics driven by a nonlinear function
of the electric field. It is known that most materials exhibit nonlinear polarization
characteristics especially when the amplitude of the input signal is large. In a first
attempt to incorporate nonlinear effects in the Debye polarization model we considered

τṖ + P = ε0εdE + f(E). (3.1)

We showed that this constitutive relationship together with the weak formulation of
the problem (2.8) is well-posed. In particular, we have the following result

Theorem 3.1 If the nonlinear function f : IR → IR is C1, with f(0) = 0, and f ′(z) >
0 for all z ∈ IR, and f is affine at infinity, i.e., there exist constants R, L such that
for every |x| > R, |f(x)| ≤ L|x|, then there exists a weak solution to the system (2.8),
(3.1) with initial conditions

E(0, z) = Φ, (3.2)
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Ė(0, z) = Ψ, (3.3)

for any Φ ∈ V, Ψ ∈ H, Js ∈ H2(0, T ; V ∗). The weak solution is unique, and depends
continuously on Φ, Ψ and Js under the additional assumption that f is globally Lips-
chitz.

The details of the proofs can be found in [6].
In our numerical simulations we take f(E) = βE3, which is an approximation to

a saturation limited nonlinearity required by the above theorem. We implemented
the same numerical method outlined in the previous section, except that in this case
(2.14)-(2.15) contain nonlinear terms. We used a functional iteration in the nonlinear
version of (2.14) to obtain en, which is then used to update the polarization term
pn. Comparison of the nonlinearly forced model (3.1) with the corresponding linear
dynamics is depicted in Figures 11 and 12 for the 10 GHz and 1 THz case, respectively.

In these simulations we have a weak nonlinearity with β = −5 × 10−6 and the
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Figure 10: Comparison of the linear (solid line) and nonlinearly forced (dashed line)
results, 10 GHz example.

amplitude of the input signal is small, A = 10. The linear and nonlinear results do not
differ substantially in the 10 GHz case (see Figure 11). In that case if β is positive
we observed that a nonlinearly forced polarization dynamics leads to a signal whose
main part arrives slightly earlier and is slightly larger than the corresponding portion
of the signal in the linear material. The reverse is true if the E3 term has a negative
coefficient in (3.1). The same observation holds true for the case of input signals with
carrier frequency 1 GHz. However, in the 1 THz example (see Figure 12), the situation
is different. The main part of the signal arrives at approximately the same time in
the linear and nonlinearly forced cases, and we can see a larger difference between the
linear and nonlinearly forced results.

11



0.005 0.01 0.015 0.02

−400

−200

0

200

400

t (ns)

el
ec

tr
ic

 fi
el

d 
(v

ol
ts

/m
et

er
)

0.02 0.04 0.06 0.08 0.1

−0.05

0

0.05

t (ns)

el
ec

tr
ic

 fi
el

d 
(v

ol
ts

/m
et

er
)

Signal at z=0.00416667 (meters)

0.005 0.01 0.015 0.02 0.025

−30

−20

−10

0

10

20

30

t (ns)

el
ec

tr
ic

 fi
el

d 
(v

ol
ts

/m
et

er
)

Signal at z=0.003 (meters)

0.02 0.04 0.06 0.08 0.1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t (ns)

el
ec

tr
ic

 fi
el

d 
(v

ol
ts

/m
et

er
)

Signal at z=0.00375 (meters)

Signal at 0.0025 (meters) 

Figure 11: Comparison of the linear (solid line) and nonlinearly forced (dashed line)
results, 1 THz example.

4 Nonlinear Debye Polarization model

Our last set of numerical simulations are based on a nonlinear Debye medium with
polarization dynamics given by:

τṖ + g(P ) = ε0(εs − ε∞)E. (4.1)

We choose g(P ) = P + sP 3, where s is a small parameter. The cubic nonlinear term
is chosen since most biological tissues are not expected to have an axis of symmetry.
However, it must be considered as an approximation to a saturation limited nonlinear
mechanism that can be anticipated for orientational polarization. Large departures
from the linear behavior can be observed even for weak nonlinearities if the amplitude
of the input signal is sufficiently large. In our simulations s = 10−3 and the amplitude
A of the input signal is in the range 1010 to 1012. Figures 13 and 14 show the comparison
between the nonlinear Debye model (4.1) and the corresponding linear dynamics in the
10 GHz and 1 THz case, respectively.

We make several interesting observations. With A = 1010 in the 10 GHz example
(Figure 13), it is clear that the leading edge of the main part of the signal (i.e., the
Brillouin precursor) arrives faster than in the corresponding linear simulation. More-
over, the electric field is considerably larger in the nonlinear Debye medium. However,
an input signal with amplitude A = 1010 leads to no difference in the electric field
in the linear and nonlinear simulations in the 1 THz example (not shown) and one
must increase the amplitude to see any difference in the results (see Figure 14, where
A = 1011). The difference is similar to that we observed in the nonlinearly forced case
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Figure 12: Comparison of the linear (solid line) and nonlinear (dashed line) results,
10 GHz example.

in the terahertz regime. The main part of the signal appears at the same time, but in
the nonlinear material the field is much larger, almost twice as large as in the linear
case. We note that for A = 1012 the field produced in the nonlinear case is two orders
of magnitude larger than that in the corresponding linear case.

5 Conclusion

In this paper we presented numerical results for the propagation of high frequency
windowed pulses in dielectric materials. Although the problem was simplified by gen-
erating the signal inside the material we emphasize that this formulation can readily
be extended to treat interfaces and reflected signals, and is therefore suitable to treat
the inverse or interrogation problem. The understanding and correct description of
temporal transients is important in its own right in assessing safety standards and
making the interrogation problem practically feasible. As we noted in the Introduc-
tion, electromagnetic interrogation with high frequency windowed pulses have many
potential applications. We remark that it is desirable to extend the physical problem to
two and three dimensions, to create more realistic models for these applications. The
two dimensional extension has been carried out for a linear Debye medium in [5] using
perfectly matched layers. It was also implemented under slightly different assumptions
and using a different numerical method in [4].
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Figure 13: Comparison of the linear (solid line) and nonlinear (dashed line) results,
1 THz example.
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